Learning-induced enduring changes in functional connectivity among prefrontal cortical neurons.

نویسندگان

  • Eun H Baeg
  • Yun B Kim
  • Jieun Kim
  • Jeong-Wook Ghim
  • Jeansok J Kim
  • Min W Jung
چکیده

Current thinking about how memories are stored in the brain has been profoundly influenced by Donald O. Hebb's cell assembly hypothesis, which posits that (1) learning produces a stable alteration in patterns of connectivity among repeatedly coactivated neurons, and (2) memory retrieval involves reactivation of those altered patterns of connectivity. However, learning-induced changes in connectivity that persist over long periods of time have not been clearly demonstrated. In the present study, two spatial navigation tasks and a long-term ensemble recording technique are used to describe long-lasting modifications in functional connectivity (FC) (defined as changes in synchronous firing) of prefrontal cortical neurons in behaving rats. Animals were initially trained to alternate visiting two spatial locations on a figure-8-shaped maze to obtain a reward (alternating task 1). Afterward, while continuing on task 1, animals were additionally trained to visit only one spatial location on the same maze to obtain a reward (unilateral task 2). Multiple single units were recorded while rats were undergoing acquisition, retention, and performance of both tasks. Our data indicate that correlated firing of prefrontal cortical neurons changed significantly in early phases of training when learning rate was maximal but became progressively smaller in later phases when learning reached asymptote. After animals became proficient, FC remained constant, although neuronal activities varied across two different tasks. The present finding of negatively accelerated changes in FC confirms associative learning theories and provides crucial neurophysiological evidence for Hebb's hypothesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain Functional Connectivity Changes During Learning of Time Discrimination

The human brain is a complex system consist of connected nerve cells that adapts with and learn from the environment by changing its regional activities. Synchrony between these regional activities called functional network changes during the life, and with learning of new skills. Time perception and interval discrimination are among the most necessary skills for the human being to perceive mot...

متن کامل

Effects of left prefrontal transcranial direct current stimulation on the acquisition of contextual and cued fear memory

Objective(s): Behavioral and neuroimaging studies have shown that transcranial direct current stimulation, as a non-invasive neuromodulatory technique, beyond regional effects can modify functionally interconnected remote cortical and subcortical areas. In this study, we hypothesized that the induced changes in cortical excitability following the application of cathodal or anodal tDCS over the ...

متن کامل

Negative symptoms in schizophrenia are associated with aberrant striato-cortical connectivity in a rewarded perceptual decision-making task

BACKGROUND Negative symptoms in schizophrenia have been associated with structural and functional changes in the prefrontal cortex. They often persist after treatment with antipsychotic medication which targets, in particular, the ventral striatum (VS). As schizophrenia has been suggested to arise from dysfunctional connectivity between neural networks, it is possible that residual aberrant str...

متن کامل

Neuronal mechanisms of executive control by the prefrontal cortex.

Executive function is considered to be a product of the coordinated operation of various processes to accomplish a particular goal in a flexible manner. The mechanism or system responsible for the coordinated operation of various processes is called executive control. Impairments caused by damage to the prefrontal cortex are often called dysexecutive syndromes. Therefore, the prefrontal cortex ...

متن کامل

The Effect of Slow Electrical Stimuli to Achieve Learning in Cultured Networks of Rat Cortical Neurons

Learning, or more generally, plasticity may be studied using cultured networks of rat cortical neurons on multi electrode arrays. Several protocols have been proposed to affect connectivity in such networks. One of these protocols, proposed by Shahaf and Marom, aimed to train the input-output relationship of a selected connection in a network using slow electrical stimuli. Although the results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2007